NOx Emission Model for the Grate Firing of Biomass Fuel
نویسندگان
چکیده
Establishing an appropriate NOX production and decomposition model is of practical significance to the grate firing of biomass fuel. This study used the CHEMKIN software package to simulate the combustion process of biomass pyrolysis and char combustion. Through rate of production (ROP) analysis and simplification based on GRI-Mech3.0, the 15-step reaction mechanism of volatile-N converting into NOX and the 12-step reaction mechanism of char-N converting into NOX were specified. It was found that in the NOX generated from the fuel, N was mainly in the form of NO and N2O. HCN and NH3 were the important intermediate products. NH3 was mainly converted into NO and some converted into N2O, while HCN mainly consumed NO and produced N2O. According to the transfer characteristics of the biomass fuel nitrogen, the NOX production and decomposition model of the biomass fuel nitrogen in grate furnace firing was established. A simulation computation on the NOX production was implemented for an actual furnace. The established model was confirmed reliable through the comparison of field test data and simulation results.
منابع مشابه
Effects of Flue Gas Internal Recirculation on NOx and SOx Emissions in a Co-Firing Boiler
Volumetric combustion has been developed to realize a high substitution ratio of biomass in co-firing boilers, which features an intensive flue gas internal recirculation inside furnace. However, the characteristics of NOx and SOx emissions in large-scale boilers with volumetric combustion were not fully clear. In this paper, an Aspen Plus model of volumetric combustion system was built up base...
متن کاملGrate Furnace Combustion: A Submodel for the Solid Fuel Layer
The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed submodels are required. Here, a submodel for the reverse combustion process in the solid fuel layer on the grate is described. The submodel is shown to give good predictions for th...
متن کاملA New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments
Based on the existing biomass co-firing technologies and the known innate drawbacks of dedicated biomass firing, including slagging, corrosion and the dependence on fuel, a new model of agro/forestry residue pellets/shreds and coal co-fired in a large Pulverized Coal (PC) furnace was proposed, and the corresponding technical and economic assessments were performed by co-firing testing in a 300 ...
متن کاملDevelopment of a Mathematical Model for Prediction of Pollutants Emission in D. I. Diesel Engines
Major pollutants emission from Direct-Injection (D.I) diesel engines are predicted by means of a mathematical model. In order to construct such a model, an integral Multi-Zone Combustion Model (MZCM) is formulated, which basically consists of jet mixing and combustion submodels. In MZCM, variation of injection pressure is considered. Also time period of ignition delay is predicted by considerin...
متن کاملNumerical modeling of biomass combustion in a stoker boiler
Biomass fuel is considered a promising substitute for traditional fossil fuels. Amid a great variety of methods for converting the energy in biomass fuel into usable energy, direct combustion is still the dominant technology employed by industry. Because biomass fuel possess a much wider range of physical and chemical properties than fossil fuel, its combustion behavior is similarly diverse (an...
متن کامل